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Abstract. A detailed theoretical discussion is presented for the surface polaritons and
attenuated total reflection (ATR) spectra of layered antiferromagnets when an applied magnetic
field is parallel to the surface and to the propagation direction (i.e. Faraday geometry).
Ouwr numerical results for NiQ reveal the existence of both bona fide surface polariton and
generalized surface modes which were never indicated before in magnetic systems. In addition,
the conventional dervation of the rf permeability tensor g has recently been argued to be
incorrect and conseguently should be replaced by an alternative derivation that is consistent
with macroscopic electrodynamics. We suggest, in view of previous experience on FIR magnetic
spectroscopy, that FIR ATR spectroscopy rnay directly discriminate between the alternative forms
for . The results are equally valid for a large class of magnetic layered systems including
artificial magnetic superlattices with antiferromagnetic coupling.

1. Infroduction

A recent smdy of the theoretical and experimental oblique incidence reflectivity of the
uniaxial antiferromagnet FeF, [1, 2] has shown that very high-quality spectra of magnetic
excitations in the retarded (electromagnetic) region g ~ w/c can be obtained with a high-
resolution far-infrared (FIR) spectrometer. The measured spectra are governed by the
frequency-dependent magnetic permeability tensor pe(w), which represents the response of
the spin system to a driving electromagnetic field at FIR frequency . In the conventional
theory the linear response of the system to an applied rf field h exp(—iwt) is used as the
basis for the susceptibility or permeability calculation in 2 magnetic crystal [3]. However,
it has recently been argued [4] that this is incorrect for layered antiferromagnets such
™ as NiO, as well as for a large class of easy plane magnetic systems including artificial
magnetic superlattices with some degree of antiferromagnetic coupling in which successive
spin layers order as in figure I. The alternative method, which we refer to as the A/b
method, proposes that the correct response consistent with macroscopic electrodynarmics
involves the components of h parallel to the layers but the components of & normal to
the layers. This approach is in accordance with the effective medium theory of magnetic
superlattices [5, 6] in that these are the components that are continuous from layer to Iayer.
Such a calculation leads to a shifted resonance in the permeability tensor component ft,,(®)
which incorporates effects from demagnetizing fields that are not present in permeabilities
calculated using the conventional or constant-f method. For future reference, the resonance
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frequencies w_ obtained by the conventional method and w; obtained by the #/& method
are given by ,

w_ = y(2H,H, sin*6)!/* (1)
and
wy = y[2H.(H, + 47 M;)sin* 61"/, @
H,
Z
y

Figure 1. Magnetic moment arrangement in fayered antiferromagnet NiO. The aligned spins in
layer A are antiferromagnetically coupled to the spins in layer B. In the absence of the external
field Hg moments on neighbouring planes are ordered antiparallel along x direction. In the
presence of a field the spins in each layer make an angle ¢ with respect to Hy [4, 9).

Here H, is the exchange field, H, is an effective anisotropy field, M. is the saturation
magnetization of each magnetic sublattice and 8 is the canting angle shown in figure 1. For
bulk crystals, cos & = Hy/2H,. The other components fiyy{@), fry (@) and fiyy (@) in both
methods take the same form [4] with a single resonance frequency in an applied field Hy
given by

wy = y(HE + HoH, cos8)!/2, (3

If substantiated by experiment, [4] will lead to a substantial reconsideration of a number
of established results for a large class of magnetic layered structures, including easy plane
antiferromagnets and rare earth magnets with helical magnetic orderings [7, 8]. The main
_question that should be addressed is how the difference between the two expressions for

" iz, can be justified experimentally. In the light of its importance, theoretical discussion of
this question is a very desirable preliminary to experimental studies. Calculations of the
kind presented here and previously [9] are also timely since FIR spectroscopy of magnetic
materials at high resolution is now available [1, 2].

In a previous paper [9] we have presented a theoretical discussion of the surface
polaritons and ATR spectra of layered antiferromagnets in the Voigt geometry (in which the
applied field is parallel to the interface and perpendicular to the propagation direction) with
particular reference to NiO (Néel temperature Ty = 523 K). It has the type II fcc structure
at T < Ty, with ferromagnetic layers of spins in (111} planes stacked antiferromagnetically
along {111} directions [10]. With a magnetic field Hy applied parallel to the easy planes,
the equilibrium orientation of the sublattice moments is as shown in figare 1. ‘We find



Surface polaritons and ATR spectra 6425

that the solutions for the dispersion relations of surface polaritons in the Voigt geometry
separate into s (TE) and p (TM) polarization [9] using the usual nomenclature [1, 2]. The s
polarization solution involves only the tensor components piy, ptry and fLyy, and does not
directly resolve the question. Surprisingly, for the p polarization solution, which involves
only ., we find no surface polariton modes. Therefore experiments aimed specifically at
the surface polaritons in this configuration cannot resolve the question either.

In this paper we continue and extend the work considerably for the other geometry
of fundamental interest in which the applied field is parallel to the interface and to the
direction of propagation, also known as the Faraday geometry. We find that the required
dispersion relation for surface polaritons now involves all the four tensor components fiy,
fixys Hhyy and g... For the particular case of NiO we find both bona fide surface polariton
and generalized surface modes [11] which correspond to two-component surface waves
decaying away from the interface. Particularly, both components decay exponentially in
the surface polariton modes and decay in an oscillatory fashion in the generalized surface
modes. These modes clearly display the shifted resonance in p.,; that is, the resonance
frequencies w_ obtained by the conventional method and w._ obtained by the 4/b method
are markedly separated in the @—¢ plane. Accordingly, it is a plausible speculation that the
question of the correct form of p can be resolved conclusively by FIR ATR spectroscopy
which gives direct access to the surface polaritons. We believe that this article represents a
significant extension of our previous work in [9]. As far as we are aware, there have been
no previous publications which deal with ATR spectra of surface magnetic polaritons in the
Faraday geometry.

In the next section we derive and discuss the surface polariton dispersion curves in the
Faraday configuration. In section 3 we then derive and show ATR spectra. Calculations are
presented and illustrated numerically using the experimental magnetic parameters of NiQ
already quoted in [9]. We finally present a general discussion and conclusions of this paper
in section 4. ’

2. Surface magnetic polaritons

With the system of coordinates shown in figure 1, we examine surface polaritons at the
interface y = 0 between vacuum (y < 0) and the magnetic medium (y > 0) following the
usual procedure [3]. Elimination of the electric field variables from Maxwell’s equations
gives the required equation for the rf field H:

VIH —V(V-H)—(g/cHp -2 H/a* =0. . G

The surface polariton fields, with amplitudes that decay with distance from the interface
and propagating parallel to the applied field Hy as a plane wave in the z direction, can be
written

H = (H], H], H)) explenoy) expligz — iwt) (y <0) )

H = (H,, Hy, H;)exp(—uy) exp(igz — iwt) {(y>0 (5)]

where ¢ is the wave vector of the surface polaritons and o and « are the spatial decay
constants in vacuum and the medium of dielectric constant g, respectively. It can be shown
that the decay constant ¢ is simply given by

oy = g* — w?/ct. Q)
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After substituting equation (6) into equation (4} and using the explicit form of g already
quoted in [9], we have a set of three homogeneous linear equations for the components H,,
H, and H,:

0 — g% + spigew?/c? Efhgyw fC? 0 H,
[ —epgywt/c? Syt /c? — g* iger :| {Hy =0. (8)
0 g o +spwt/ct | LH,

As seen from (8), the polarization of the surface modes is neither transverse electric (TE) nor
transverse magnetic (TM) since the electric and magnetic vectors do not lie in the sagittal
plane, i.e. the plane defined by the normal of the interface and the propagation direction.
The electric vector, for instance, traces out an ellipse which contains the wave vector ¢ and
is inclined to the sagittal plane. Consequently, a combination of s and p polarized incident
light is necessary in order to excite the surface modes by optical techniques such as ATR.
This is indeed the case as will be made clear in section 3.

In order for equation (8) to have a nontrivial solution, the determinant of coefficients
must vanish. As a result, the spatial decay constant ¢ is then given by

a*+ Ao+ B =0 ©)
where
2
)
A= = 8the + thas + 13y ty) = (L btz y)g” (10)
and
Hzz w” w? \?
B=— ‘.?4 - qz_zs(ﬂu:x + P"yjf) + (_25) (ﬂxx.u'yy + U'iy) . (11)
Hyy ¢ c

Of the four roots in (9), only the two positive or those with positive real parts are suitable
for exponentially decaying waves in the magnetic medium [11]. If we call these roots o
and @ for a given w and g, then there are two possible surface modes corresponding to
the following conditions: (i) bona fide or standard surface modes if ¢; and ¢, are both
real and positive, and (ii) generalized surface modes if ¢¢; and oy are mutually complex
conjugates with positive real parts. If ¢ is real and « is pure imaginary, or vice versa,
we have pseudosurface modes which are not true surface modes. It is clear from (9) that
the medium is birefringent, that is there are two acceptable values of the wave vector g for
a given frequency @ and each mode has a well defined polarization [12]. With two decay
constants o7y and oz, the surface polariton fields inside the sample (y > 0) can be written
as a linear superposition of two plane waves such as (6):

2
H= [Z (HP, HD, B exp(—cs y)] exp(igz — iot). (12)
i=1

it should be noted that only two independent field amplitudes or coefficients in (12} are
needed, for example H" and H{®, since the polarization of each term here is definite
and therefore all the other field components can be determined once an unknown one has
been chosen. The expression (5) for H in vacuum, on the other hand, describes a running
surface wave in an isotropic medium. In this case, the polarization is not definite so there
are also two independent field amplitudes (for instance, H; and HY). Finally, HY and all the
remaining components of H written in (5) and (6) can be found from Maxwell’s equations.

The required dispersion relation for the surface polaritons can be obtained by applying
the electromagnetic boundary conditions at the interface y = ¢ for the paraliel components
E,, E,, H; and H,. As mentioned before, we should first express these in terms of the four
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unknowns HY, H?, HV and H®. The boundary conditions immediately give the implicit
dispersion relation in the Faraday configuration

2
,uzzag[al + czz + ooy + gople + o) + s(gu,»Z 2)]

ooy (eary + 0ty + 002) — C0q oz (s — €}/ lyy = 0. (13)

It is worth pointing out that the algebra has involved cancelling out a factor (o¢; -~ «2), which
is consistent with the assumption (12) that a solution to equation (4) in the sample is the
superposition of the two waves associated with the two different decay constants. In other
words, two such waves are required to satisfy the electromagnetic boundary cordifions at
the interface [11].

As evident from equations (9)}—(11} and (13), all the tensor components fiyy, My
and iy, as well as u; in question, appear in the dispersion relation for the surface
polaritons. In contrast to our previous results [9] for the Voigt geometry, which showed the
nonexistence of the p polarized surface modes, the relation (13} would certainly provide a
direct experimental probe of the surface polaritons that can in principle discriminate between
the alternative expressions for i, by analysing the corresponding ATR spectra. In section 3,
we will calculate and discuss some ATR curves for surface polaritens of NiO in the Faraday
geometry that clearly highlight the potential of this technique to resolve the question.

In equations (10), (11) and (13), g appears ounly as even powers so that the dispersion
‘curves for positive and negative g are identical. That is, changing the sign of g does
not change the frequency w : w(—g) = w(g). The surface mode propagation is therefore
reciprocal, which is required by symmetry [13]. With & = 0 or B = 0 in (9), we obtain
the dispersion relation for the bulk modes which is again even in ¢ so the bulk mode
propagation is also reciprocal.

In the nonretarded limit ¢ 3> w/c (¢ — ©0), the decay constants are or; — g and
s — g{lez/tyy)/? 50 that equation (13) reduces to

1 (Uyyhig) = 1. (14)

Consequently, a bona fide surface wave will only exist in this hmxt if both g4y, and ., are
negative in the frequency region of interest.

Equation (13) together with equations (7} and (9) has been solved numerically for the
dispersion curves of NiQO after making use of the magnetic permeability tensor derived in
the conventional and the A/p methods. Typical results for bulk and surface polaritons are
shown in figure 2 with the applied field Hy = 0 and in figure 3 with Hy = 3 T. Here we plot
the results with p., derived from the conventional analysis in figures 2(a) and 3(2) and from
the h/b analysis in figures 2(b} and 3(b). In all cases, each of the dispersion curves starts
as a bona fide surface mode at a certain point on a boundary of one bulk continuum, then
continues as a generalized surface mode over a narrow range of g and finally terminates as
another bona fide surface mode at a finite value of g in the other bulk continuum.

Figures 2 and 3 also show that the surface modes in the Faraday geometry have no
magnetostatic limits g » w@/c in the sense that they exist only over a finite range of
g, so they actually resemble the virtual surface modes [3, 111. As revealed by further
numerical exploration, this occurs since the values of 1, and g, in the frequency interval
oceupied by the surface polariton curves do not satisfy the condition required by equation
(14). We should also emphasize at this point that both sets of curves, as shown in figure
2 or 3, clearly display the shifted resonance in p,,. That is, the resonance frequencies w_
obtained by the conventional method and w, obtained by the £/b method are markedly
separated in the w—g plane. We may then expect that an ATR measurement will be able to
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Figure 2. The dispersion curves for bona fide surface polaritons {SP, solid lines) and generalized
surface waves (GSW, dotted lines) for NiO in the Faraday geometry in zero applied field: (a)
conventional method, (b) i/6 method. The shaded regions and the dashed curve o = 0 are bulk
polariton dispersion curves. In both sets of curves, the ATR scan line (dashed-dotted lines) is
drawn for ¢ = 42° and &, = 11.56 (Si). The arrows on the vertical axis indicate frequencies
where the ATR scan line crosses a surface polariton dispersion curve. The resonance frequencies
w_ and wy are given by (1) and (2), respectively.

discriminate the difference. For future reference, we also plot the ATR scan line specified
by ¢ = s,l,/ 2(cr.:/c) sin¢ with the prism dieleciric constant &, = 11.56 (Si) and the fixed
angle of incidence in the prism ¢ = 42°. As indicated by the arrows in the figures, ATR
dips may be expected when the scan lines cross the surface polariton curves. This is the
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Figure 3. The dispersion curves for surface polaritons and generalized sueface waves for NiQ
in the Faraday geometry in applied field Hy = 3 T. Other details as in figure 2. Frequencies of

ATR dips discussed later in section 3 are indicated by the arrows on the vertical axis.

case as will be made clear in section 3.
In figure 4, the reduced decay constants ¢; /g in the magnetic crystal are plotted against

the wave vector ¢ of the surface polaritons with dispersion curves shown in figure 3. The
real and imaginary parts of the complex conjugate quantities oy and o3 are also plotted
in the generalized surface wave regions. We see that one of the decay constants goes to
zero at the endpoints of the surface polariton curves, which means that near these points
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Figure 4. The reduced decay constants {a/g) in the sample versus wave vector ¢ of surface
polaritons whose dispersion curves are shown in figure 3(b). In the generalized surface wave
(GSW) regions, the real and imaginary parts of ¢ are alse plotted.

only the solution involving one o is necessary. In other words, the influence of the crystal
birefringence on the surface modes in this configuration will disappear as they merge with
the bulk modes. A similar phenomenon was also found for surface magnetoplasmons of a
semiconductor in an appropriate geometry [11, 14].

3. Calculations of the attenunated total reflection (ATR)

As indicated in section 2, the suiface polariton modes can couple to both s and p polarized
light in an ATR experiment due to the complicated polarization of the surface mode
electromagnetic fields. In view of this feature, we will consider an ATR amrangement
in the Otto configuration as illustrated in figure 5 which takes into account all the four
possible polarization geometries for the incident and reflected light [2, 14]: s to s, s to
p. p to p and p to s reflection. Since the derivation of the expressions for the reflectivity
involves a sequence of steps familiar from ordinary optics, we need only give an outline of
the procedure,

As shown in figure 5, we consider a three-layer system consisting of prism, air gap and
magnetic sample. We choose the y axis normal to the interfaces and the yz plane as the
plane of incidence; the air gap extends from y = —d to y = 0. The applied magnetic field
Hy is along the z axis.

Consider first an s polarized incident wave of frequency w and wave vector k =
(0, kL, k) on the y = —d interface; with ky = ksing, k; = kcos¢, k = e;,/z(co/c) and ¢
the angle of incidence. The electric and magnetic fields are given by (Ey, 0, 0) and (Ep/ tow)
(0, ky, —k.), respectively, with the same phase factor of the form exp(i(kcLy + kyz — wr)).

Up to this point, it is useful to calculate the electric and magnetic field components
of the wave propagating in the magnetic sample with wave vector k, = k[0, (k2/k* —
sin® )12, sin ¢]. This wave satisfies the wave equation (4), so the magnitude of &, can be
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Figure 5. The geometry for the ATR calculation. The incident light of frequency @ in the prism
of dielectric constant g, propagates at an angle ¢ > ¢, with ¢, = sin'l([/aj'f “} the critical
angle for total internal reflection. The external magnetic field Hy is in the plane of incidence.

obtained from the quadratic equation in k2

B+C2+D=0 s
where .

C = —(fhee + foz + 12, /1043095 — (1 — poe/ oy )i* sin® ¢ (16)
and .
D = qlpney(thax + 1y Byy) + Gok® sin® @linca(l — thoz/ fryy) + 12y 1gy] (17)

with g2 = gpw?/c* and assuming that there is no wave in the negative-y direction. For
a given frequency w, equation (15) clearly has two solutions for k; because the magnetic
crystal is birefringent and two transmitted waves propagate in the medium. Consequently
this gives two reflected waves, One propagates with the same polarization as the incident
wave (s to s reflection) while the other propagates with orthogonal or p polarization (s to p
reflection). If we write £ and & as the two solutions of equation (15), E and H in the
medium are given by

E,/Ex = Az Ey/E, = —(k** — k*sin® ¢)~'*ksing (18)
H}'/Hx =0y H./H,=f. H (E; = oxfpow - (19)
where,
o = (K77 — wxx@)/ (xyds) (20)
kX2 — g2 — k*sin?®
fo = o —Puo —k S0P @1)
(k7 — k2 sin”® ¢)1/2k sin or.
k-T':Z — ks 2 172 :
Ay Bil&; sin” ¢} 22

T wapiksing — (kK — K2sin® ¢)1/2
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a Bk sing — (k5 — k2 sin® ¢) /2

Using the field ratios given by equations (18) and (19), we finally obtain the electric and
magnetic components of the transmitted waves:

Ex = (t2Eo){1, —(k;% — I sin® $) ™20 sk sin @, Ax] (24)

Ox (23)

Hy = (tx0+Eo/ttow)[Bx, ¢xfs, 1] 25)

where #, and t_ represent the transmission coefficients for both waves.

In the air gap (—d < y < ) we have two downward propagating waves of wave
vector ky = (0, ixp, ky) and two upward waves of wave vector k, = (0, —ikp, k) with
ko = (&p sin” ¢ — £0)/%w/c. For the down waves, the electric and magnetic fields are given
by (#1E5,0,0) and (# Eo/‘u.ow)(o.. k", —ikg)forstos polarization and by (t2 Eg) (0, ik|[/k:u, 1
and (% Ey/pow)(i2, 0, 0) for s to p polarization. These should be multiplied by the phase
factor exp(i(icoy + kyz — w#)) and the transmission coefficients are denoted by 4 and 1
with x = —i(kf — 3)/%o. The electric and magnetic fields of the up waves for both
polarizaiion can be obtained from those of the down waves by making the replacements
= T, 82 = To, 60 = —ip and 7 — —k2.

‘We can now write down the electric and magnetic fields of the first reflected wave (s to
s polarization) at the y = —d interface with wave vector (0, —k, ky) as (ry; Eo, 0,0} and
(ros Eo/ ttow)(0, ky, ko). For the second or p polarized wave, we have (rp Eo)(0, &y /&L, 1)
and (rypEo/tow)(—ky,0,0) with & == k/cos¢. The phase factors for both waves are
given by exp(i(—k.y + kyz — wt)). In these expressions ry, and ry, denote the reflection
coefficients for s to s and s to p polarization, respectively, The computed reflectivities are
taken as the square moduli of these coefficients.

The electromagnetic boundary conditions for the tangential components of the
electromagnetic fields at y = —d and y = 0 lead to eight linear equations in the reflection
coefficients ry, and ryp and six transmission coefficients #;, f2, T3, To, £+ and t_. After some
algebra we finally obtain the refiectivities given by

. . 2
T L irg)eod 4 (ko + icp)h e ! }
Rys = |rss|” = s T k0)e ™ o+ (s — Ve (s—s reflection) (26)
and
2 2.k (€ + fe™) : _
Rsp = ]Tsp| = LT i)e™ T s — eyhoo (s—p reflection) (27
where
Kot K
fi = (;—_é) exp(2icod) (28)
g = 2ikg(Ar o — A_Byoy) 29
T+ ) Ay — 2icalh_(ixo — o) — A4 (ikg — 0)]
Ay = (0 — 03} (Aeicz + B-0) — (ito — 0=) (ks + Bi0) (30)
and

hs = [2iko(haicy — Ayicy + B0 — B0y ) + 2gua{0_ — a4) — Agl/ Ay (31)
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Finally, we consider similar calculations for incident p polarization. Expressions for the
reflectivities can be derived as before. The results are given by
2

2 (k1 — K2)e? + (k1 + k)b pe™"od .
Rpp = |rpp| = o T o) e = Kz)hi per: (p-p reflection) (32)
and
2 -
2 2gp:c| (e"“" + fpe_xﬂd) .
Ry = I’ml = PR T S P (p-s reflection). (33)

The quantities appearing in equations {32) and (33) are now

o+ 4
fr= (ixg = ki) exp(24od) (34)
_ a0y — o) 7
gp - (1 —+ fp)Ap + 2iFCO(A.._K2 - l.l_sz +B_J_ - B+0’.§_) (35)
Ay =4y (36)

and
By = (2uea[Ar(icg — 0-) — A_(ikp — 04)1 + 2ikogp (Am fpOy — Agfut) — Ap)/Ap.  (3T)

We should mention at this point that it is necessary to include a damping parameter I" in
the caleulation of the ATR spectra and we simply do this by the replacement w — @ il

To iflustrate some numerical implications of the ATR formulae (26) and (27) and (32)
and (33) for layered antiferromagnets, we present in figures 6 and 7 some ATR curves for
surface polariton modes of NiO with dispersion curves already shown in figures 2 and 3.
All spectra may be understood by reference to the scan line for ¢ = 42° and g, = 11.56
(Si), as drawn in figures 2 and 3. These are plotted for a moderate value of damping
I" = 0.05 cm™!, which is typical of a good crystal of FeF; [1, 2] at low temperature, and a
spacing 4 = I pm between prism and sample which is chosen to give strong surface mode
dips. We also see broad dips which are usually attributed to overcoupling due to small
spacing that gives rise to distorted surface mode lines and accordingly introduces the loss
of energy to bulk polaritons [3].

Figure 6 shows the ATR curves of NiQ for Hy = 3 T with the scan line drawn in figure
3 and linewidth of the order of 0.2-0.3 cm™'. As expected, spectra with the complete
set of polarization combination (s—s, s—p, p—p and p-s) are produced as a result of the
complicated polarization of the surface polariton fields, In all sets of curves we have made
use of the tensor element p,, derived from an 2/b analysis {curves with label a) and a
conventional analysis (curves with label b). These clearly display the shifted frequency of
the surface polariton mode, indicated by the two arrows with a difference in position by
about 1 cm™!, which directly originate from the difference between the two expressions
for p;; and consequently should be open to experimental test. We may also note that the
appearance of weak s to p and p to s reflection as given by equations (27) and (33) is a
distinctive characteristic of the ATR spectra. We find that the p to s reflection is stronger
than the s to p reflection by a factor of about four, as also fourd in FeF; [2].

To exarine the effect of external field on the ATR spectra, we have plotted the calculated
reflectivity for various values of Hy in figure 7 where we have particularly made use of g,
derived from an h/b analysis. Three typical curves are drawn with Hy =0,3 Tand 7 T
for all polarization combinations. We find that the curves shift slightly to lower frequency
with increasing field.
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Figure 6. The calculated ATR spectra of surface polaritons on NiQ whose dispersion curves
are shown in figure 3 for (A} sto s, (B) p to p, {C) s to p and (D} p to s reflection. The surface
polariton frequencies are indicated by the arrows, as depicted in figure 3, for both methods of
constructing g (a) &/ method and (b) conventional method. Parameters in four sets of spectra
are given by Ho =3 T, T =0.05cm™ !, d =1 um, ¢ = 42° and ¢, = 11.56.

The other main distinction between the ATR spectra presented here and those reported
in [9] is the scale of the frequency scan for available field Hj in a laboratory. In the previous
work [9], the frequency scale of the ATR spectra in s polarization is set by w4 given by (3)
which is of the order of up to 10 cm™! for a modest value of Hy. It is unfortunately at the
low end of the range that would be accessible to Fourier transform FIR spectroscopy. On
the other hand, the frequency range of the ATR curves in this paper is scaled by the higher-
mode frequency, either w_ or wy, which is in the FIR region more easily accessible to the
instrument. Finally, it is worth mentioning for NiO that the antiferromagnetic resonance
(AFMR] frequency has recently been investigated by Raman scattering [15] and the lower
mode (w.) by Brillouin scattering [16].
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Figure 7. The field-dependent ATR spectra of surface. polaritons on NiO whose dispersion
curves are obtained in the 41/ method. Polarization combinations are (2) s to s, (B) p to p, ()
s to p and (d) p to s with Hy = 0 (solid lines), Hy =3 T (dashed lines} and Hy = 7 T (dotted
lines). Other parameters as quoted in figure 6.

4, Conclusions

In this paper we have given a full theoretical discussion for the surface polaritons (section
2) and ATR spectra (section 3) of layered antiferromagnets with equilibrium orientation of
the sublattice moments shown in figure 1. The applied magnetic field is parallel to the
surface of the sample and to the propagation direction. The theory is then applied to the
specific case of NiO. There has recently been some uncertainty [4] about the correct means
of determining the rf magnetic permeability tensor of this material. The two methods, which
we refer to as the conventional and the A /b methods, disagree only over the correct form
of ttz;. In contrast to our previous work [9] for the Voigt geometry, the main guestion that
is addressed in this paper is how the difference between the two expressions for i, can be -
tested directly by an experiment aimed specifically at the surface polaritons; we show the
dispersion and ATR curves of NiO. ‘
Figures 3 and 6 are the most important results of this work. They show that the surface
polariton dispersion curves obtained from relation (13) clearly display the shift due to g,;;
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that is, both curves are markedly separated in the w—g plane with a difference in frequency
of about 1 em~!. Using equations (26) and (27) and (32) and (33), the computed ATR
spectra are shown in figure 6 which provide direct experimental probes for resolving the
basic question mentioned before. Previous experience on FIR spectroscopy of magnetic
features [1, 2] suggests that the ATR dips should be readily detectable.

In addition, our numerical results for NiO reveal for the first time the existence of
the bona fide surface polariton and generalized surface modes in a magnetic system, like
those found many years ago for surface magnetoplasmons of a semiconductor [11, 14).
We believe that the independent experimental observation of these modes, apart from FIR
ATR spectroscopy, should be possible; for example, using modified ATR ellipsometry [17],
Brillouin light scattering (BLS) {18-211 or Raman scattering. In reflection ellipsometry,
both modes would certainly have different ellipsometric parameters W and A due to the
fact that they have different states of polarization. For example, the sign change in these
parameters as the mode evolves from surface polariton to generalized surface wave would
be interesting since it has already given a qualitative distinction between the two waves.
Finally, we may note that some recent BLS studies have observed generalized surface modes
and pseudosurface modes in PbTe {18], GaAs [19-21] and InSh [21].
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