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Abslrad. A detailed theoretical discussion is presented for the surface polarimns and 
attenuated toWl reflection (ATR) spectra of layered antifemmagnets when an applied magnetic 
field is parallel U, the surface and to the propagation dict ion (i.e. Faraday geomeuy). 
Our numerical results for NiO reveal the existence of both bona fide surface polariton and 
generalized surface modes which were never indicated before in magnetic systems. In addition, 
lhe conventional derivation of the rf permeability tensor p has recently been argued to be 
incorren and consequently should be replaced by an alternative derivation that is consistent 
with macroscopic electrodynamics. We suggest, in view of previous experience on FIR magnetic 
spectroscopy. that FIR ATR spectroscopy may directly discriminate between the alternative forms 
for p. The results are equally valid for a large class of magnetic layered system including 
artificial magnetic Superlattices with antiferroniagneric coupling. 

1. Introduction 

A recent study of the theoretical and experimental oblique incidence reflectivity of the 
uniaxial antiferromagnet FeF, [I, 21 has shown that very high-quality spectra of magnetic 
excitations in the retarded (electromagnetic) region q - w / c  can be obtained with a high- 
resolution far-infrard (FIR) spectrometer. The measured spectra are govemed by the 
frequency-dependent magnetic permeability tensor p(o), which represents the response of 
the spin system to a driving elec’uomagnetic field at FIR frequency w. In the conventional 
theory the linear response of the system to an applied rf field hexp(-iwt) is used as the 
basis for the susceptibility or permeability calculation in a magnetic crystal 131. However, 
it has recently been argued [4] that this is incorrect for layered antiferromagnets such ‘ as NiO, as well as for a large class of easy plane magnetic systems including artificial 
mbnetic superlattices with some degree of antiferromagnetic coupling in which successive 
spin layers order as in figure 1. The alternative method, which we refer to as the h/b 
method, proposes that the correct response consistent with macroscopic electrodynamics 
involves the components of h parallel to the layers but the components of b normal to 
the layers. This approach is in accordance with the effective medium theory of magnetic 
superlattices 15.61 in that these are the components that are continuous from layer to layer. 
Such a calculation leads to a shifted resonance in the permeability tensor component p&) 
which incorporates effects from demagnetizing fields that are not present in permeabilities 
calculated using the conventional or constant-h method. For future reference, the resonance 
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fiequencies w- obtained by the conventional method and wd obtained by the h / b  method 
are given by 

w- = y(2HeH, sin2B)'/2 (1) 

wd = y[ZH,(H, +4nM,)sin26']'/2. (2) 

and 1..l _---_-_ 

[y 
-_--_--__-_ 

Figure 1. Magnetic moment Mangemem in layered antiferromagnet NiO. The aligned spins in 
layer A are mtiferromagnetically coupled to the spins in layer B. In the absence of the external 
field Ho moments on neighbouring planes are ordered antipadel along x direction. In the 
presence of a field the spins in each layer &e an angle B with respect to Ho 14, 91. 

Here Hc is the exchange field, H, is an effective anisotropy field, M3 is the saturation 
magnetization of each magnetic sublattice and B is the canting angle shown in figure 1. For 
bulk crystals, cos0 = H0/2He. The other components pxz(w),  pxy(w) and pyy(o) in both 
methods take the same form 141 with a single resonance frequency in an applied field HO 
given by 

U+ = y(H; + HoH, cosB)"z. (3) 
If substantiated by experiment, [4] will lead to a substantial reconsideration of a number 
of established results for a large class of magnetic layered structures, including easy plane 
antiferromagnets and rare earth magnets with helical magnetic orderings [7, 81. The main 

~. .  question that should be addressed is how the difference between the two expressions for 
pzr  can be justified experimentally. In the light of its importance, theoretical discussion of 
this question is a very desirable preliminary to experimental studies. Calculations of the 
kind presented here and previously [9] are also timely since FIR spectroscopy of magnetic 
materials at high resolution is now available [ I ,  21. 

In a previous paper 191 we have presented a theoretical discussion of the surface 
polaritons and ATR spectra of layered antiferromagnets in the Voigt geometry (in which the 
applied field is parallel to the interface and perpendicular to the propagation direction) with 
particular reference to NiO (Ne1 temperature TN = 523 K). It has the type I1 fcc structure 
at T < TN, with ferromagnetic layers of spins in (11 1) planes stacked antifertomagnetically 
along (1 11) directions [lo]. With a magnetic field HO applied parallel to the easy planes, 
the equilibrium orientation of the sublattice moments is as shown in figure 1. We find 
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that the solutions for the dispersion relations of surface polaritons in the Voigt geometry 
separate into s (TE) and p (TM) polarization [9] using the usual nomenclature [l,  21. The s 
polarization solution involves only the tensor components fizz. pry and f iyy.  and does not 
directly resolve the question. Surprisingly, for the p polarization solution, which involves 
only fizz, we find no surface polariton modes. Therefore experiments aimed specifically at 
the surface polaritons in this configuration cannot resolve the question either. 

In this paper we continue and extend the work considerably for the other geometry 
of fundamental interest in which the applied field is parallel to the interface and to the 
direction of propagation, also known as the Faraday geometry. We, find that the required 
dispersion relation for surface polaritons now involves all the four tensor components pXx. 
f ixy,  pYy and fizz! For the particular case of NiO we find both bonofuie surface polariton 
and generalized surface modes [I  11 which correspond to two-component surface waves 
decaying away from the interface. Particularly, both components decay exponentially in 
the surface polariton modes and decay in an oscillatory fashion in the generalized surface 
modes. These modes clearly display the shifted resonance in f izz; that is, the resonance 
frequencies w- obtained by the conventional method and w- obtained by the hlb  method 
are markedly separated in the plane. Accordingly, it is a plausible speculation that the 
question of the correct form of 1.1 can be resolved conclusively by FIR ATR spectroscopy 
which gives direct access to the surface polaritons. We believe that this article represents a 
significant extension of our previous work in [9]. As far as we are aware, there have been 
no previous publications which deal with ATR spectra of surface magnetic polaritons in the 
Faraday geometry. 

In the next section we derive and discuss the surface polariton dispersion curves in the 
Faraday configuration. In section 3 we then derive and show ATR spectra. Calculations are 
presented and illustrated numerically using the experimental magnetic parameters of NiO 
already quoted in [9]. We finally present a general discussion and conclusions of this paper 
in section 4. 

2. Surface magnetic polaritons 

With the system of coordinates shown in figure 1, we examine surface polaritons at the 
interface y = 0 between vacuum (y c 0) and the magnetic medium (y > 0) following the 
usual procedure 131. Elimination of the electric field variables from Maxwell’s equations 
gives the required equation for the rf field H :  

V 2 H  - V(V . H )  - (&/c2 )p .  a2H/at2 = 0. (4) 

The surface polariton fields, with amplitudes that decay with distance from the interface 
and propagating parallel to the applied field HO as a plane wave in the z direction, can be 
written 

(5) 

(6) 

where q is the wave vector of the surface polaritons and a0 and a! are the spatial decay 
constants in vacuum and the medium of dielectric constant E,  respectively. It can be shown 
that the decay constant cy0 is simply given by 

oro-q - w / c .  

H = (H:, H,”. Hp) exp(oroy) exp(iqz - iwr) (y c 0) 

(y =. 0) H = (Hx ,  H,, H,)exp(-ory),exp(iqz - iwt) 

(7) 2 - 2  2 2  
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After substituting equation (6) into equation (4) and using the explicit form of p already 
quoted in [9], we have a set of three homogeneous linear equations for the components H,, 
HY and H,: 

-EPxy W 2 / C z  &I.LYYW2/C2 - 42 iqor ] [;]=o. (8) 

As seen from (8). the polarization of the surface modes is neither transverse electric (TE) nor 
transverse magnetic (TM) since the electric and magnetic vectors do not lie in the sagittal 
plane, i.e. the plane defined by the normal of the interface and the propagation direction. 
The electric vector, for instance, traces out an ellipse which contains the wave vector q and 
is inclined to the sagittal plane. Consequently, a combination of s and p polarized incident 
light is necessary in order to excite the surface modes by optical techniques such as ATR. 
This is indeed the case as will be made clear in section 3. 

In order for equation (8) to have a nontrivial solution, the determinant of Coefficients 
must vanish. As a result, the spatial decay constant or is then given by 

ffz - q2 f EPxxxW2/C2 E P x y W 2 / C 2  0 

[ o  iqor f f 2 f  EPzz102 I C 2  

o r 4 + ~ f f 2 + ~ = ~  (9) 
where 

and 

Of the four roots in (9). only the two positive or those with positive real parts are suitable 
for exponentially decaying waves in the magnetic medium [ll]. If we call these roots 011 

and a2 for a given o and q,  then there are two possible surface modes corresponding to 
the following conditions: (i) bona fide or standard surface modes if 011 and a2 are both 
real and positive, and (ii) generalized surface modes if or1 and a2 are mutually complex 
conjugates with positive real parts. If 011 is real and a2 is pure imaginary, or vice versa, 
we have pseudosurface modes which are not true surface modes. It is clear from (9) that 
the medium is birefringent, that is there are two acceptable values of the wave vector q for 
a given frequency o and each mode has a well defined polarization [12]. With two decay 
constants 011 and az, the surface polariton fields inside the sample (y > 0) can be written 
as a linear superposition of two plane waves such as (6): 

H = (H:), H,?, H:)) exp(-oriy) exp(iqz - iot). (12) [ ’  i=l 1 
It should be noted that only two independent field amplitudes or coefficients in (12) are 
needed, for example HF) and Hr), since the polarization of each term here is definite 
and therefore aU the other field components can be determined once an unknown one has 
been chosen. The expression (5) for H in vacuum, on the other hand, describes a mnning 
surface wave in an isotropic medium. In this case, the polarization is not definite so there 
are also two independent field amplitudes (for instance, IT: and Hp). Finally, H,” and all the 
remaining components of H written in (5) and (6) can be found from Maxwell’s equations. 

The required dispersion relation for the surface polaritons can be obtained by applying 
the electromagnetic boundary conditions at the interface y = 0 for the parallel components 
Ex,  Et, HI and HL. As mentioned before, we should first express these in terms of the four 
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unknowns H,", Hp, H:') and HJ'). The boundary conditions immediately give the implicit 
dispersion relation in the Faraday configuration 

w2 

CZ 
M,,rrOIrr: + 4 + a1012 + ErrO(LYI +m2) + - E ( k  - &)I 

+"(&~O + 011 + 012) - 010q2Prr(LLzr - E)/LLyy = 0. (13) 
It is worth pointing out that the algebra has involved cancelling out a factor (011 -a'), which 
is consistent with the assumption (12) that a solution to equation (4) in the sample is the 
superposition of the two waves associated with the two different decay constants. In other 
words, two such waves are required to satisfy the electromagnetic boundary conditions at 
the interface [ l l ] .  

As evident from equations (9)-(11) and (13), all the tensor components pxX, pxy 
and pyY, as well as pzr in question, appear in the dispersion relation for the surface 
polaritons. In contrast to our previous results 191 for the Voigt geometry, which showed the 
nonexistence of the p polarized surface modes, the relation (13) would certainly provide a 
direct experimental probe of the surface polaritons that can in principle discriminate between 
the alternative expressions for pz2: by analysing the corresponding ATR spectra. In section 3, 
we will calculate and discuss some ATR curves for surface polqitons of NiO in the Faraday 
geomehy that clearly highlight the potential of this technique to resolve the question. 

In equations (10). (11) and (13). q appears only as even powers so that the dispersion 
curves for positive and negative q are identical. That is, changing the sign of q does 
not change the frequency w : w ( - q )  = w ( q ) .  The surface mode propagation is therefore 
reciprocal, which is required by symmetry [13]. With rr = 0 or B = 0 in (9), we obtain 
the dispersion relation for the bulk modes which is again even in q so the bulk mode 
propagation is also reciprocal. 

In the nonretarded limit q >> w / c  (c -+ w), the decay constants are a1 -+ q and 
012 + q ( p z r / p y y ) 1 / 2  so'that equation (13) reduces to 

(14) P;'(&yyPz:) 112 - - -1  . 

Consequently, a bona fide surface wave will only exist in this limit if both pyy and prr are 
negative in the frequency region of interest. 

Equation (13) together with equations (7) and (9) has been solved numerically for the 
dispersion curves of NiO after making use of the magnetic permeability tensor derived in 
the conventional and the h/b  methods. Typical results for bulk and surface polaritons are 
shown in figure 2 with the applied field HO = 0 and in figure 3 with HO = 3 T. Here we plot 
the results with prz derived from the conventional analysis in figures 2(a) and 3(a) and from 
the h/b analysis in figures 2(b) and 3(b). In all cases, each of the dispersion curves starts 
as a, bona fide surface mode at a certain point on a boundary of one bulk continuum, then 
continues as a generalized surface mode over a nmow range of q and finally terminates as 
another bona fide surface mode at a finite value of q in the other bulk continuum. 

Figures 2 and 3 also show that the surface modes in the Faraday geomehy have no 
magnetostatic limits q >> o j c  in the sense that they exist only over a finite range of 
q ,  so they actually resemble the virtual surface modes [3, 111. As revealed by further 
numerical exploration, this occurs since the values of pyy and pZz in the frequency interval 
occupied by the surface polariton curves do not satisfy the condition required by equation 
(14). We should also emphasize at this point that both sets ,of curves, as shown in figure 
'2 or 3, clearly display the shifted resonance in fizz. That is, the resonance frequencies w- 
obtained by the conventional method and wd obtained by the h/b  method are 'markedly 
separated in the q plane. We may then expect that an ATR measurement will be able to 
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450 460 470 480, 490 500 510 
q(cm-1 

I I 

460 470 480 490 500 510 520 530 540 
q (cm-l) 

Figure 2. The dispersion c w e s  for bona fide surface polnritons (SP. solid lines) and generalized 
surface waves (GSW. dolted lines) for NiO in the Faraday geometry in zero applied field (a) 
conventional method, (b) hlb method. The shaded regions and the dashed curve a = 0 are bulk 
polariton dispersion curves. In both sels of curves. the ATR scan line (dashed-dotted lines) is 
drawn for 4 = 4Z0 and eP = 11.56 (Si). The arrows on the verticnl axis indicate frequencies 
where the ATR scan line crosses a surface polariton dispersion curve. The resonance frequencies 
w- and w are given by (I) and (Z), respectively. 

discriminate the difference. For future reference, we also plot the ATR scan line specified 
by q = ~;”(u/c)s in4 with the prism dielectric constant cP = 11.56 (Si) and the fixed 
angle of incidence in the prism 9 = 42”. As indicated by the arrows in the figures, ATR 
dips may be expected when the scan lines cross the surface polariton curves. This is the 
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Figure 3. The dispersion curves for surface polaritons and generalized surface waves for NiO 
in the Faraday geometry in applied field .% = 3 T. Other details as in figure 2. Frequencies of 
ATR dips discussed later in section 3 are indicated by the MOWS on the vertical axis. 

case as will be ma& clear in section 3. 
In figure 4, the reduced decay constants q / q  in the magnetic crystal are plotted against 

the wave vector q of the surface polaritons with dispersion curves shown in figure 3. The 
real and imaginary parts of the complex conjugate quantities and EZ are also plotted 
in the generalized surface wave regions. We see that one of the decay constants goes to 
zero at the endpoints of the surface polariton curves, which means that near these points 
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0.4 I 

" 
470 480 ~~ 490 500 510 

q (cm-') 
Figure 4. The reduced decay constants (cllq) in the sample versus wave vector q of surface 
polaritons whose dispersion cumes we shown in figure 3(b). In Ihe generalized surface wave 
(GSW) regions, the real and imaginary p m  of e are also plolted. 

only the solution involving one [Y is necessary. In other words, the influence of the crystal 
birefringence on the surface modes in this configuration will disappear as they merge with 
the bulk modes. A similar phenomenon was also found for surface magnetoplasmons of a 
semiconductor in an appropriate geometry [ I I ,  141. 

3. Calculations of the attenuated total reflection (ATR) 

As indicated in section 2. the surface polariton modes can couple to both s and p polarized 
light in an ATR experiment due to the complicated polarization of the surface mode 
electromagnetic fields. In view of this feature, we will consider an ATR arrangement 
in the Otto configuration as illustrated in figure 5 which takes into account all the four 
possible polarization geometries for the incident and reflected light 12, 141: s to s, s to 
p, p to p and p to s reflection. Since the derivation of the expressions for the reflectivity 
involves a sequence of steps familiar from ordinary optics, we need only give an outline of 
the procedure. 

As shown in figure 5, we consider a three-layer system consisting of prism, air gap and 
magnetic sample. We choose the y axis normal to the interfaces and the yz plane as the 
plane of incidence; the air gap extends from y = -d to y = 0. The applied magnetic field 
H, is along the z axis. 

Consider first an s polarized incident wave of frequency w and wave vector IC = 
(0, k l ,  kll) on the y = -d interface: with kll = ksin@, k i  = kcas@, k = (w/c)  and @ 
the angle of incidence. The electric and magnetic fields are given by (EO. 0,O) and (Eo/poo) 
(0, kli. 41). respectively, with the same phase factor of the form exp(i(kLy + kllz - O f ) ) .  

Up to this point, it is useful to calculate the electric and magnetic field components 
of the wave propagating in the magnetic sample with wave vector k,, = k[O, (k:/kZ - 

sin@]. This wave satisfies the wave equation (4), so the magnitude of ICs can be 

112 
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y = o  
3 Sample 

E ,v 
I 

Y 
J. 

Figure 5. The geometry for the ATR calculation. The incident light of frequency o in the prism 
of dielectric mnsmt ep propagates at an angle 4 =- &. with @c = sin-’(l/$’) the critical 
angle for total internal reflection. The external magnetic field H,, is in the plane of incidence. 

obtained from the quadratic equation in k: 

k,‘ + Ck,: + D = 0 

where 

(16) 2 . 2  
~ ~ 

C = -(h + pZz + & / p y y ) q ~  - (1 - k / f i y y ) k  sin q5 
and 

D = q & r r ( h  + P : ~ / P ~ ~ )  + qik2Sin2q5bxiU - P ~ ~ / P ~ ~ )  + (17) 
~ with qi = E ~ ~ ~ / C ’  and assuming that there is no wave in the negativey direction. For 

a given frequency w, equation (15) clearly has two solutions fork, because the magnetic 
crystal is birefringent and two transmitted waves propagate in the medium. Consequently 
this gives two reflected waves. One propagates with the same polarization as the incident 
wave (s to s reflection) while the other propagates with orthogonal or p polarization (s to p 
reflection). If we write k,’ and k; as the two solutions of equation (15), E and H in the 
medium are given by 

E2/Ex = h i  EyIE, = -(k:’ - k2 sin’ q5)-’’2k sin q5 (18) 

HyIHx=a+ HxIHz=B+ HzIE.x=dPaw (19) 

a+ = (k? - k x x d ) / ( f i . w & )  (7.0) 

~ 

 where^ 

k:’ - pnq; - k 2 ’ 2  sin q5 
Pa = ( k y  - k2 sin2 $) ‘ /2k  sin @a+ 

,6&2 - k2 sin’ $)‘I2 

a&k sin$ - (k:’ - k2 sin’ q5)’12 
h* = 
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Using the field ratios given by equations (18) and (19), we finally obtain the electric and 
magnetic components of the transmitted waves: 

EA = (r+Eo)[l, -(k,y - kzsin24)-1/'A*ksin@, hi] (24) 

.fG = (W*EO/LLOO)[@+, a+@+. 11 ( 2 3  

where t+ and t- represent the transmission coefficients for both waves. 
In the air gap (-d c y -= 0) we have two downward propagating waves of wave 

vector kd = (0, iKo, kil) and two upward waves of wave vector IC,  = (0, -iKo, kll) with 
KO = (E,, sin' 4 - E O ) ~ / ~ O / C .  For the down waves, the electric and magnetic fields are given 
by (tlEo,O, 0) and ( t lEo/~~oo)(O.  kll, -ko) for s to s polarization and by (tzEo)(O, ikll/Ko, 1) 
and ( ~ ~ E o / ~ o w ) ( K ~ ,  0,O) for s to p polarization. These should be multiplied by the phase 
factor exp(i(iK0y f kllz - ut)) and the transmission coefficients are denoted by tl and tz 
with KZ = -i(kf - K;)/Ko. The electric and magnetic fields of the up waves for both 
polarization can be obtained from those of the down waves by making the replacements 

We can now write down the electric and magnetic fields of the first reflected wave (s to 
s polarization) at the y = -d interface with wave vector (0, -kl, kil) as (rssEo,O, 0 )  and 
(r,EO/jwo)(O, kll, kL). For the second or p polarized wave, we have (r,rpEO)(O. kll/kl, 1) 
and (rspEo/pou)(-~~.O,O) with KI = k/cos@. The phase factors for both waves are 
given by exp(i(-kLy + kllz -ut)).  In these expressions r,, and rs,, denote the reflection 
coefficients for s to s and s to p polarization, respectively, The computed reflectivities are 
taken as the square moduli of these coefficients. 

The electromagnetic boundary conditions for the tangential components of the 
electromagnetic fields at y = -d and y = 0 lead to eight linear equations in the reflection 
coefficients r,Ts and rsp and six transmission coefficients t l ,  t z ,  TI, Tz. r+ and t-. After some 
algebra we finally obtain the reflectivities given by 

ti + TI, tz + Tz, KO + -Kg and Kz --f -Kz. 

and 

where 
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Finally, we consider similar calculations for incident p polarization. Expressions for the 
reflectivities can be derived as before. The results are given by 

and 

The quantities appearing in equations (32) and (33) are now 

fp = (e) exp(2Kod) 
IKo - kA (34) 

(35) g p  = 

A p  = (36) 

%do+ - 0-1 
(1 4- f p ) h p  4- ziKo(h-Kz - h+K2 4- 2-0- - p+U+) 

and 

h, = (%&L+(ixo -U-) - A-(iKO-- U+)] + 2iKogp(h-p+u+ -&.@-U-) - A p ) / A p .  (37) 
We should mention at this point that it is necessary to include a damping parameter r in 

the calculation of the ATR spectra and we simply do this by the replacement w -+ w + ir. 
To illustrate some numerical implications of the ATR formulae (26) and (27) and (32) 

and (33) for layered antiferromagnets, we present in figures 6 and 7 some ATR curves for 
surface polariton modes of NiO with dispersion curves already shown in figures 2 and 3. 
All spectra may be understood by reference to the scan line for q5 = 42" and &p = 11.56 
(Si), as drawn in figures 2 and 3. These are plotted for a moderate value of damping 
r = 0.05 cm-', which is typical of a good crystal of FeF2 [I, 21 at low temperature, and a 
spacing d = 1 pm between prism and sample which is chosen to give strong surface mode 
dips. We also see broad dips which are usually attributed to overcoupling due to small 
spacing that gives rise to disrorted surface mode lines and accordingly introduces the loss 
of energy to bulk polaritons [3]. 

Figure 6 shows the ATR curves of NiO for HO = 3 T with the scan line drawn in figure 
3 and linewidth of the order of 0.2-0.3 cm-l. As expected, spectra with the complete 
set of polarization combination (s-s, s-p, p p  and p-s) are produced as a result of the 
complicated polarization of the surface polariton fields. In all sets of curves we have made 
use of the tensor element pzz derived from an h/b analysis (curves with label a) and a 
conventional analysis (curves with label b). These clearly display the shifted frequency of 
the surface polariton mode, indicated by the two arrows with a difference in position by 
about 1 cm-', which directly originate from the difference between the two expressions 
for fizz and consequently should be open to experimental test. We may also note that the 
appearance of weak s to p and p to s reflection as given by equations (27) and (33) is a 
distinctive characteristic of the ATR spectra. We find that the p to s reflection is stronger 
than the s to p reflection by a factor of about four, as also found in FeF2 [2]. 

To examine the effect of external field on the ATR spectra, we have plotted the calculated 
reflectivity for various values of HO in figure 7 where we have particularly ma& use of pzz 
derived from an h/b analysis. Three typical curves are drawn with HO = 0 , 3  T and 7 T 
for all polarization combinations. We find that the curves shift slightly to lower frequency 
with increasing field. 
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Figure 6. The caicuhred ATR spectra of surface polmitons on NiO whose dispersion curves 
m shown in figure 3 for (A) s to s. (B) p top. (C) s t o p  and (D) p to s reflecrion. The surface 
polJriton frequencies are indicated by the m w s ,  as depicted in figure 3, for both methods of 
constructing p :  (a) hJb method and (b) conventional method. P"&rs in four se& of spectra 
are given by HO = 3 T. r' = 0.05 cm-', d = I gm, 6 = 42' and cp = 11.56. 

w(  cm-' ) W(Cm- ' )  

. 
The other main distinction between the ATR spectra presented here and those reported 

in [91 is the scale of the frequency scan for available field HO in a laboratory. In the previous 
work [91, the frequency scale of the ATR spectra in s polarization is set by U+ given by (3) 
which is of the order of up to 10 cm-' for a modest value of Ho. It is unfortunately at the 
low end of the range that would be accessible to Fourier transform FIR spectroscopy. On 
the other hand, the frequency range of the ATR curves in this paper is scaled by the higher- 
mode frequency, either 0- or od, which is in the FIR region more easily accessible to the 
instrument. Finally, it is worth mentioning for N O  that the antiferromagnetic resonance 
(AF'MR) frequency has recently been investigated by Raman scattering [15] and the lower 
mode (U+) by Brillouin scattering [16]. 
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Figure 7. The field-dependent ATR spectra of surfam polaritons on NiO whose dispersion 
curves are obtained in the hlh method. Polarization combinations are (a) s to s, (b) p to p, (c) 
s to p and (d) p IO s with Ho = 0 (solid lines). Hi) = 3 T (dashed lines) and Hi, = I T (dotted 
lines). Other parameters as quoted in hgure 6. 

4. Conclusions 

In this paper we have given a full theoretical discussion for the surface polaritons (section 
2) and ATR spectra (section 3) of layered antiferromagnets with equilibrium orientation of 
the sublattice moments shown in figure 1. The applied magnetic field is pmllel to the 
surface of the sample and to the propagation direction. The theory is then applied to the 
specific case of NiO. There has recently been some uncertainty 141 about the correct means 
of determining the rf magnetic permeability tensor of this material. The two methods, which 
we refer to as the conventional and the hlb  methods, disagree only over the correct form 
of pzz. In contrast to our previous work [9] for the Voigt geometry, the main question that 
is addressed in this paper is how the difference between the two expressions for pzz can be 
tested directly by an experiment aimed specifically at the surface polaritons; we show the 
dispersion and ATR curves of NiO; 

Figures 3 and 6 are the most important results of this work. They show that the surface 
polariton dispersion curves obtained from relation (13) clearly display the shift due to pZr; 
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that is, both curves are markedly separated in the 0-q plane with a difference in frequency 
of about 1 cm-l. Using equations (26) and (27) and (32) and (33). the computed ATR 
spectra are shown in figure 6 which provide direct experimental probes for resolving the 
basic question mentioned before. Previous experience on FIR spectroscopy of magnetic 
features [ 1, 21 suggests that the ATR dips should be readily detectable. 

In addition, our numerical results for NiO reveal for the first time the existence of 
the bona fide surface polariton and generalized surface modes in a magnetic system, like 
those found many years ago for surface magnetoplasmons of a semiconductor [ I l ,  141. 
We believe that the independent experimental observation of these modes, apart from FIR 
ATR spectroscopy, should be possible; for example, using modified ATR ellipsometry [17], 
Brillouin light scattering (BLS) [18-211 or Raman scattering. In reflection ellipsometry, 
both modes would certainly have different ellipsometric parameters Y and A due to the 
fact that they have different states of polarization. For example, the sign change in these 
parameters as the mode evolves from surface polariton to generalized surface wave would 
be interesting since it has already given a qualitative distinction between the two waves. 
Finally, we may note that some recent BLS studies have observed generalized surface modes 
and pseudosurface modes in PbTe [181, GaAs [19-21] and InSb [21]. 
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